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We first compare the mathematical structure of quantum and classical mechanics when
both are formulated in a C∗-algebraic framework. By using finite von Neumann algebras,
a quantum mechanical analogue of Liouville’s theorem is then proposed. We proceed to
study Poincar´e recurrence in C∗-algebras by mimicking the measure theoretic setting.
The results are interpreted as recurrence in quantum mechanics, similar to Poincar´e
recurrence in classical mechanics.

1. INTRODUCTION

The notion of Poincar´e recurrence in classical mechanics is quite well-known.
Roughly it means that within experimental error a classical system confined to a
finite volume in phase space will eventually return to its initial state. This happens
because of Liouville’s theorem which states that Lebesgue measure is invariant
under the Hamiltonian flow.

Recurrence also occurs in quantum mechanics. One approach to recurrence in
quantum mechanics has been through the theory of almost periodic functions (see
for example, Bocchieri and Loinger, 1957; Hogg and Huberman, 1982; Percival,
1961). Another line of research, involving coherent states, along with possible
applications of quantum recurrence, can be traced by Seshadriet al. (1999) and
references therein. However, these methods differ considerably from the measure
theoretic techniques employed to study recurrence in classical mechanics.

In this paper we intend to show how recurrence in quantum mechanics can
be cast in a mathematical form that looks the same as the classical case. More
precisely, the quantum case is a noncommutative extension of the classical case.
Some of the methods presented also provide a general view on how to translate
between the quantum and classical descriptions of nature.

A few remarks concerning the mathematical setting are in order. Recently
Niculescuet al.(in press) working from a purely mathematical viewpoint, showed
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that an analogue of Poincar´e recurrence can be obtained in a C∗-algebraic frame-
work. Since both quantum and classical mechanics can be formulated in the
language of C∗-algebras, it seems most natural to work in this setting. In fact,
as we shall see in Section 2, quantum mechanics and classical mechanics are iden-
tical, except for commutativity, when both are viewed purely in C∗-algebraic terms.
Our approach to Poincar´e recurrence will differ somewhat from that of Niculescu
et al. (2001) in that we will also consider mappings between C∗-algebras, rather
than just linear functionals on C∗-algebras. Furthermore, instead of looking at arbi-
trary elements of the algebras, we will concentrate on the projections. The reasons
for this will become clear in Sections 2 and 3. The main mathematical results are
presented in Section 4.

For these results to have implications for quantum mechanics, we can ex-
pect from our remarks concerning the classical case that we will need a quantum
mechanical analogue of Liouville’s theorem. We propose such an analogue in
Section 3, and in the process we are naturally led to consider finite von Neumann
algebras. In Section 5 we describe how the theorems of Section 4 would result
in recurrence in quantum mechanics. Using the analogy between quantum and
classical mechanics we also briefly discuss the properties a quantum mechani-
cal system should most likely have in order to satisfy the requirements of these
theorems.

2. QUANTUM MECHANICS AND CLASSICAL MECHANICS
IN A C ∗-ALGEBRAIC SETTING

We start with two simple definitions that apply to both quantum mechanics
and classical mechanics:

Definition 2.1. An observableof a physical system is any attribute of the system
which results in a real number when measured. We call this real number thevalue
of the observable during the measurement.

Definition 2.2. Consider any observable of a physical system, and any Borel set
S⊂ R. We now perform an experiment on the system which results in a “yes” if
the value of the observable lies inSduring the experiment, and a “no” otherwise;
the experiment gives no further information. We call this ayes/no experiment.

Definition 2.2 seems justified since in practice there are always experimental
errors, in other words we always get a range of values (namelyS in Definition 2.2)
rather than a single value.

Let’s look at the C∗-algebraic formulation of quantum mechanics (also see
Haag, 1996). Consider any quantum mechanical system. We represent the observ-
ables of the system by a unital C∗-algebraA, called theobservable algebraof the
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system, and the state of the system by a stateω onA (i.e.ω is a normalized positive
linear functional onA). A contains the spectral projections of the system’s observ-
ables rather than the observables themselves. By this we mean the following: To
any yes/no experiment that we can perform on the system, there corresponds a
projectionP in A such thatω(P) is the probability of getting a “yes” during the
experiment for any stateω of the system. We will refer toP astheprojection of
the yes/no experiment.

We will only consider yes/no experiments for which the experimental setup
is such that at least in the case of a “yes” the system survives the experiment (for
example, it is not absorbed by a detector), so further experiments can be performed
on it. What does the system’s state look like after such an experiment? Consider
for the moment the Hilbert space setting for quantum mechanics. Here the (pure)
states of a system are represented by nonzero vectors in a Hilbert spaceH, called
thestate spaceof the system. Suppose the state is given by the unit vectorx in H.
After a yes/no experiment the state is given by the projection ofx on some Hilbert
subspace ofH. Denoting the corresponding projection operator in case of a “yes”
by Q, we see that the system’s state after the experiment would then be given by
the unit vectorQx/‖Qx‖. It is clear thatQ is the projection of the experiment,
since‖Qx‖2 = 〈x, Qx〉 is exactly the probability of getting a “yes.” (Here the
stateθ on the C∗-algebraL(H) of all bounded linear operators onH, given by
θ (A) = 〈x, Ax〉, is the C∗-algebraic representation of the statex, in the sense of
ω above.)

Returning to our system with observable algebraA, we know by the GNS-
construction (see for example Section 2.3.3 of Bratteli and Robinson, 1987) that
there exists a Hilbert spaceH, a∗-homomorphismπ : A→L(H), and a unit vector
Ä in H, such that

ω(A) = 〈Ä, π (A)Ä〉 (1)

for all A in A. This looks like the usual expression for the expectation value of an
observable (here represented byπ (A)) for a system in the stateÄ in the Hilbert
space setting (compareθ above). On a heuristic level we therefore regardH as the
state space of the system, andÄ as its state. Say the result of the yes/no experiment
with projection P is “yes.” On the basis of the Hilbert space setting described
earlier, it would now be natural to expect that after the experiment the state is
represented by the unit vectorÄ′ = π (P)Ä/‖π (P)Ä‖, sinceπ (P) is the projection
of the experiment in the Hilbert space setting in the same way asQ above (and
henceπ (P) here plays the role ofQ). Note that‖π (P)Ä‖2 = ω(P) > 0 since this
is exactly the probability of getting the result “yes.” We now replaceÄ in (1) by
Ä′ to get a new expectation functionalω′ defined by

ω′(A) = 〈Ä′, π (A)Ä′〉
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for all A in A. Clearlyω′(A) = ω(P AP)/ω(P), soω′(1)= 1, which implies that
ω′ is a state onA. Based on these arguments we give the following postulate:

Postulate 2.3. Consider a quantum mechanical system in the stateω on its ob-
servable algebraA. Suppose we get a “yes” during a yes/no experiment performed
on the system. After the experiment the state of the system is then given by the
stateω′ onA defined by

ω′(A) = ω(P AP)/ω(P)

for all A in A, whereP is the projection of the yes/no experiment.

When expressed in terms of a density operatorρ on a Hilbert space, where
ω(A) = Tr(ρA) for a bounded linear operatorA on the Hilbert space, this is
sometimes refered to as the L¨uders rule (see Hughes (1989) or L¨uders (1951)).

Lastly we mention that the time-evolution of the system is described by a
one-parameter∗-automorphism groupτ of A, so if the projection of a yes/no ex-
periment isP at time 0, then at timet the projection of the same yes/no experiment
will be τt (P).

Now we turn to classical mechanics. We can represent the state of a classical
system by a point in itsphase spaceR2n. This is somewhat restrictive since such
a point represents exact knowledge of the state of the system, which is impossible
in practice. Therefore, we rather represent the state of the system by a Borel
measureµ onR2n such thatµ(S) is the probability that the system’s state is a point
somewhere in the Borel setS⊂ R2n. In particular we haveµ(R2n) = 1.

We view each observable of the system as a Borel functionf : R2n→ R.
This simply means that if the system’s state is the pointx in R2n, then the value
of the observable isf (x). If we perform a yes/no experiment to determine iff ’s
value lies in the Borel setS⊂ R, then the probability of getting “yes” is clearly

µ( f −1(S)) =
∫
χ f −1(S) dµ

whereχ denotes characteristic functions (i.e. for any setA, the functionχA assumes
the value 1 onA, and zero everywhere else). We can viewχ f−1(S) as a spectral
projection of the observablef , and we will refer to it asthe projection of the
yes/no experiment, just as in the quantum mechanical case. Note thatχ f−1(S)

is a projection in the C∗-algebraB∞(R2n) of all bounded complex-valued Borel
functions onR2n. We can define a stateω on the C∗-algebraB∞(R2n) by

ω(g) =
∫

g dµ

for all g in B∞(R2n). Then we see that the probability of getting a “yes” in the above
mentioned yes/no experiment isω(χ f−1(S)). So we can viewω as representing the
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state of the system in exactly the same way as in quantum mechanics, where now
B∞(R2n) is the unital C∗-algebra representing the observables of the system. For
this reason we callB∞(R2n) theobservable algebraof the system. Postulate 2.3
then holds for the classical case as well since a “yes” will mean the system’s state
is a point in f −1(S), in which case we can describe the system’s state after the
experiment by the measureµ′ given by

µ′(V) = µ(V ∩ f −1(S))/µ( f −1(S))

for all Borel setsV ⊂ R2n. As in the case ofµ andω above,µ′ corresponds to the
stateω′ on B∞(R2n) given by

ω′(g) =
∫

g dµ′ = ω(χ f −1(S)gχ f −1(S)
)
/ω
(
χ f −1(S)

)
(the second equality follows using standard measure theoretic arguments, i.e. first
prove it forg a characteristic function and then use Lebesgue convergence). This
is exactly what Postulate 2.3 says if we replace the word “quantum” by “classical.”

For the time-evolution of a classical system we need the concept of a flow.
Consider a measure space (X,6, µ), whereµ is a measure defined on aσ -algebra
6 of subsets of the setX. A flowon (X,6, µ) is a mappingt 7→ Tt onR with the
following properties:Tt is a function defined onX to itself, T0 is the identity on
X (i.e. T0(x) = x), Ts ◦ Tt = Ts+t , andTt (S) ∈ 6 andµ(Tt (S)) = µ(S) for all S
in 6. We denote this flow simply byTt .

The time-evolution of our classical system is given by a flowTt on (R2n, B, λ),
whereB is theσ -algebra of Borel sets ofR2n, andλ is the Lebesgue measure on
R2n. Note that this statement contains Liouville’s theorem, namelyλ(Tt (S)) = λ(S)
for all S in B. We callTt theHamiltonian flow. It simply means that if at time 0
the system is in the statex ∈ R2n, then at timet it is in the stateTt (x).

As in the C∗-algebraic approach to quantum mechanics, we want the time-
evolution to act on the observable algebra rather than on the states. It is clear that
an observable given byf at time 0, will then be given byf ◦ Tt at time t (the
well-known Koopman construction; Koopman, 1931). This is equivalent to the
action ofTt on the spectral projections off , sinceχ( f ◦Tt )−1(S) = χ f −1(S) ◦ Tt for all
Borel setsS⊂ R. It is easily seen that if we defineτ by

τt (g) = g ◦ Tt (2)

for all g in B∞(R2n), thenτ is a one-parameter∗-automorphism group of the
C∗-algebraB∞(R2n). So the time-evolution is described in exactly the same way
as in quantum mechanics when we are working in the C∗-algebraic setting.

We have now obtained a C∗-algebraic formulation of classical mechanics.
Note thatB∞(R2n) is an Abelian C∗-algebra. ReplacingB∞(R2n) by an arbitrary
Abelian unital C∗-algebra would give us an abstract C∗-algebraic formulation of
classical mechanics. From our discussion above it is clear that if in the C∗-algebraic
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formulation of quantum mechanics described earlier we assume thatA is Abelian,
then we get exactly this abstract C∗-algebraic formulation of classical mechanics.
SettingA = B∞(R2n) would make it concrete. In this sense the C∗-algebraic
formulation of quantum mechanics actually contains classical mechanics as a
special case.

3. A QUANTUM MECHANICAL ANALOGUE
OF LIOUVILLE’S THEOREM

We have seen in Section 2 that in purely C∗-algebraic terms quantum me-
chanics and classical mechanics are identical, except of course for the fact that
the classical observable algebra is Abelian while this is not in general true for
quantum mechanics. This suggests that it might be possible to find a quantum
mechanical analogue of Liouville’s theorem. Our first clue in this direction is
the following simple proposition, which is proved by standard measure theoretic
arguments:

Proposition 3.1. Let (X,6, µ) be a measure space withµ(X) < ∞, and let
T : X→ X be a mapping such that T−1(S) ∈ 6 for all S ∈ 6. Let B∞(6) be
the C∗-algebra of all bounded complex-valued6-measurable functions on X,
and defineτ andϕ by τ (g) = g ◦ T andϕ(g) = ∫ g dµ for all g ∈ B∞(6). Then
µ(T−1(S)) = µ(S) for all S ∈ 6 if and only ifϕ(τ (g)) = ϕ(g) for all g ∈ B∞(6).

Consider a classical system confined to a bounded Borel setF in the phase
spaceR2n. Soλ(F) < ∞, whereλ is the Lebesgue measure onR2n. We define a
measurev on the Borel sets ofR2n by

v(S) = λ(S∩ F).

Using Proposition 3.1 we see that Liouville’s theorem for this system can then be
expressed in C∗-algebraic terms by stating that

ϕ(τt (g)) = ϕ(g) (3)

for all g in B∞(R2n), whereτ is given by (2), andϕ(g) = ∫ g dv (so ϕ is a
positive linear functional onB∞(R2n)). Note that the conditionµ(X) < ∞ in
Proposition 3.1 can be dropped if we only consider positive elements ofB∞(6).
Hence (3) would express Liouville’s theorem for systems not necessarily bounded
in phase space if we were to useλ instead ofv, and only consider positive elements
g of B∞(R2n). (In this caseϕ could assume infinite values and it would not be a
linear mapping onB∞(R2n) any more.) We only work with the bounded case in
recurrence though.
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Because of Section 2, we now suspect that a quantum mechanical analogue
of Liouville’s theorem should have the same form as (3). Let’s look at this from a
different angle. In the Hilbert space setting for quantum mechanics, the state space
H can be viewed as the analogue of the classical phase spaceR2n. H is a Hilbert
space while we viewR2n purely as a measure space. Apart from dynamics, we
saw in Section 2 that the central objects in both quantum and classical mechanics
are the projections. A projection defined onH is equivalent to a Hilbert subspace
of H (namely the range of the projection). A projection defined onR2n is a Borel
measurable characteristic function, and is therefore equivalent to a Borel set inR2n.
Liouville’s theorem is based on the existence of a natural way of measuring the size
of a Borel set inR2n, namely the Lebesgue measureλ. We would therefore like to
have a natural way of measuring the size of a Hilbert subspace ofH to get a quantum
analogue of Liouville’s theorem. An obvious candidate is the (Hilbert) dimension
dim. For the Hamiltonian flowTt , Liouville’s theorem states thatλ(T−t (S)) = λ(S)
for every Borel setS. (We useT−t (S) instead ofTt (S), since this corresponds to the
action ofTt on the observable algebra rather than on the states, namelyχS ◦ Tt =
χT−t (S).) In the state space time-evolution is given by a one-parameter unitary group
Ut onH, and for any Hilbert subspaceK of H we have dim(U ∗t K)= dim(U−tK)=
dim(K). This is clearly similar to Liouville’s theorem. For a finite dimensional
state space we will in fact view this as a quantum analogue of Liouville’s theorem.
However, since state spaces are usually infinite dimensional, we would like to work
with something similar to Hilbert dimension, which does not assume infinite values.

This leads us naturally to the C∗-algebras known as finite von Neumann
algebras (see for example Kadison and Ringrose, 1986), since for such an algebra
there is a dimension function, defined on the projections of the algebra, which does
not assume infinite values. This function is in fact the restriction of a so-called trace
defined on the whole algebra, so we might as well work with this trace. We now
explain this in more detail.

Let M be a finite von Neumann algebra on a Hilbert spaceH, and letM′ be
its commutant. Then there is a unique positive linear mapping tr:M→M ∩M

′

such that tr(AB) = tr(B A) and tr(C)=C for all A, B ∈M andC ∈M ∩M
′. We

call tr thetraceof M. We mention that in the special case whereM = L(H), with
H finite dimensional, tr is just the usual trace (sum of eigenvalues) normalized
such that tr(1)= 1.

For a projectionP ∈M of H onto the Hilbert subspaceK, we see thatU ∗t PUt

is the projection ofH ontoU ∗t K, whereUt is a one-parameter unitary group onH.
So in the framework of finite von Neumann algebras we would like to replace the
equation dim(U ∗t K) = dim(K) mentioned above by tr(U ∗t PUt ) = tr(P).

If a self-adjoint (possibly unbounded) operatorA in H is an observable andM
an observable algebra of a physical system, then we want the spectral projections
χS(A) of A to be contained inM, whereS is any Borel set inR, since these
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projections are the projections of the yes/no experiments that can be performed on
the system. But thenf (A) ∈M for any bounded complex-valued Borel function
f onR. In particulare−i At ∈M for all realt .

For these reasons we will consider physical systems of the following nature:

Definition 3.2. A bounded quantum systemis a quantum mechanical system for
which we can take the observable algebra as a finite von Neumann algebraM

on a Hilbert spaceH such that the HamiltonianH of the system is a self-adjoint
(possibly unbounded) operator inH with e−i Ht ∈M for real t . We denote this
system by (M, H, H).

The reason for the term “bounded” will become clear in Section 5. We now
propose a quantum analogue of Liouville’s theorem based on the intuitive argu-
ments in terms of dimension given above. We give it in the form of a proposition:

Proposition 3.3. Consider a bounded quantum system(M, H, H). Then Ut =
e−i Ht is a one-parameter unitary group onH. Let τ be the time-evolution of the
system, i.e.τt (A) = U ∗t AUt for all A ∈M. Then

tr(τt (A)) = tr(A) (4)

for all A in M, where tr is the trace ofM. (This last statement is our quantum
analogue of Liouville’s theorem.)

Proof: Since Ut ∈M, we have tr(τt (A)) = tr(U ∗t AUt ) = tr(UtU ∗t A) = tr(A).
¤

As we suspected, our quantum analogue of Liouville’s theorem, expressed
by (4), is of the same form as the C∗-algebraic formulation of the classical Liouville
theorem as given by (3), withϕ replaced by tr. Remember thatϕ and tr are both
positive linear mappings on the respective observable algebras.

Remark. The classical Liouville theorem can also be expressed in terms of the
Liouville equation

∂ρ

∂t
= {ρ , H}

whereρ : R2n × R→ R is the density function,H the classical Hamiltonian, and
{·, ·} the Poisson bracket. This equation can be seen as describing the flow of a fluid
in phase space such that at any point moving along with the fluid, the density of
the fluid remains constant. So besides giving the time-evolution, this equation also
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states a property of the time-evolution, namely that it conserves volume in phase
space. In quantum mechanics we have the analogous von Neumann equation

dρ

dt
= i [ρ , H ]

whereρ : R→ L(H) is the density operator as a function of time (note that here
the derivative with respect to time is total instead of partial). This equation merely
gives the time-evolutionρ(t) = τ−t (ρ(0)) of the density operator, whereτ is the
time-evolution on the observable algebra here viewed as acting on the state instead
of the observables. Von Neumann’s equation by itself should therefore not be
regarded as a quantum mechanical analogue of Liouville’s theorem.

4. POINCARÉ RECURRENCE IN C∗-ALGEBRAS

In Section 3, we proposed a quantum analogue of Liouville’s theorem for
bounded quantum systems. So, by analogy with classical mechanics, these are the
type of systems for which we could expect recurrence. In this section, however,
we will be able to study Poincar´e recurrence in the more general setting of abstract
C∗-algebras.

As we shall see, the theory is surprisingly close to the usual measure theo-
retic setting. It therefore seems appropriate to briefly review Poincar´e’s recurrence
theorem and its proof. LetN = {1, 2, 3,. . . } be the positive integers. Consider a
measure space (X,6, µ) with µ(X) < ∞, and letT : X→ X be a mapping such
thatµ(T−1(S)) = µ(S) for all S in 6. This is merely an abstraction of Liouville’s
theorem. For someS∈ 6, suppose thatµ(S∩ T−n(S)) = 0 for all n ∈ N. For
all n, k ∈ N we then haveµ(T−k(S) ∩ T−(n+k)(S)) = µ(T−k(S∩ T−n(S))) =
µ(S∩ T−n(S)) = 0. Soµ(T−m(S) ∩ T−n(S)) = 0 for all m, n ∈ N with m 6= n.
It follows that

µ(X) ≥ µ
(

n⋃
k=1

T−k(S)

)
=

n∑
k=1

µ(T−k(S)) =
n∑

k=1

µ(S) = nµ(S).

Letting n→∞ it follows thatµ(S) = 0. This is one form of Poincar´e’s recur-
rence theorem, namely ifµ(S) > 0, then there exists a positive integern such that
µ(S∩ T−n(S)) > 0. It tells us thatScontains a setS∩ T−n(S) of positive measure,
which is mapped back intoSby Tn.

Note that the mappingg 7→ τ (g) = g ◦ T is a∗-homomorphism of the C∗-
algebra B∞(6) into itself such thatϕ(τ (g)) = ϕ(g) and µ(S∩ T−n(S)) =
ϕ(χSτ

n(χS)) for S∈ 6, whereϕ(g) = ∫ g dµ for all g ∈ B∞(6). Using this no-
tation Poincar´e’s recurrence theorem can be stated as follows: Ifϕ(χS) > 0, then
there exists a positive integern such thatϕ(χSτ

n(χS)) > 0. The general C∗-
algebraic approach will now be modelled after this situation. We also get some
inspiration from Postulate 2.3, for reasons to be explained in Section 5.
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Definition 4.1. Let A be a∗-algebra, andB a unital C∗-algebra. Letϕ : A→ B

be a positive mapping (i.e.ϕ(A∗A) ≥ 0 for all A ∈ A). We callϕ additiveif
n∑

k=1

ϕ(Pk) ≤ 1

for any projectionsP1, . . . , Pn ∈ A for whichϕ(Pk Pl Pk) = 0 if k < l . We callϕ
faithful if it is linear, A is unital,ϕ(1)= 1, andϕ(A∗A) > 0 for all nonzeroA in
A. We callϕ a C∗-trace if it is linear, A is unital,ϕ(1)= 1, and for allA, B ∈ A

we haveϕ(AB) = ϕ(B A). (Remember: Any C∗-algebra is a∗-algebra.)

If the positive mappingϕ given in Definition 4.1 is faithful, then it is also
additive, as we now show. LetP1, . . . , Pn ∈ A be any projections for which
ϕ(Pk Pl Pk) = 0 if k < l . Fork < l we then haveϕ((Pl Pk)∗Pl Pk) = 0, soPl Pk = 0,
and thereforePk Pl = (Pl Pk)∗ = 0. This implies that

n∑
k=1

Pk ≤ 1

since the left-hand side is a projection inA. Thus

n∑
k=1

ϕ(Pk) = ϕ
(

n∑
k=1

Pk

)
≤ ϕ(1)= 1

as promised.
In the measure theoretic setting described earlier, we can assume without

loss of generality thatµ(X) = 1. Thenϕ : B∞(6)→ C is an additive C∗-trace
since

n∑
k=1

ϕ(χSk ) =
n∑

k=1

µ(Sk) = µ
(

n⋃
k=1

Sk

)
≤ µ(X)

for anyS1, . . . , Sn ∈ 6 such thatϕ(χSkχSl ) = µ(Sk ∩ Sl ) = 0 if k 6= l .
We now state and prove a C∗-algebraic version of Poincar´e’s recurrence

theorem:

Theorem 4.2. Consider a∗-algebra A and a unital C∗-algebra B, and let
ϕ : A→ B be an additive mapping. Letτ : A→ A be a∗-homomorphism such
that ϕ(τ (P Q P)) = ϕ(P Q P) for all projections P,Q∈ A. Then, for any pro-
jection P∈ A such thatϕ(P) > 0, there exists a positive integer n such that
ϕ(Pτ n(P)P) > 0.

Proof: Note thatϕ(Pτ n(P)P) = ϕ((τ n(P)P)∗τ n(P)P) ≥ 0 for all n ∈ N. We
now imitate the measure theoretic proof.
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Supposeϕ(Pτ n(P)P) = 0 for all n ∈ N. For allk, n ∈ N we then have

ϕ(τ k(P)τ n+k(P)τ k(P)) = ϕ(τ k(Pτ n(P)P)) = ϕ(Pτ n(P)P) = 0.

Sinceϕ is additive, it follows for anyn ∈ N that
n∑

k=1

ϕ(τ k(P)) ≤ 1.

Furthermore,
n∑

k=1

ϕ(τ k(P)) =
n∑

k=1

ϕ(P) = nϕ(P) ≥ 0

sinceϕ is positive andP= P∗P. Hence 0≤ nϕ(P) ≤ 1, and thereforen‖ϕ(P)‖ ≤
1. Lettingn→∞, it follows thatϕ(P) = 0. ¤

It is clear that the measure theoretic Poincar´e recurrence theorem stated above
is just a special case of Theorem 4.2, since the projections of the C∗-algebraB∞(6)
are exactly the characteristic functionsχS, whereS∈ 6.

Note that the trace of a finite von Neumann algebra is a faithful C∗-trace,
hence we have the following corollary of Theorem 4.2, which will be used in
Section 5:

Corollary 4.3. Consider a finite von Neumann algebraM, and let tr be its trace.
Letτ : M→M be a∗-homomorphism such that tr(τ (A)) = tr(A) for all A in M.
Then, for any projection P∈M such that tr(P) > 0, there exists a positive integer
n such that tr(Pτ n(P)) > 0.

We can also give a C∗-algebraic version of Khintchine’s theorem (see Petersen
(1983), for example, as well as Niculescuet al. (in press)). But first we mention
that a subsetE of N is calledrelatively densein N if there is ann ∈ N such that
the set

E ∩ { j , j + 1, . . . , j + n− 1}
is nonvoid for everyj ∈ N.

Theorem 4.4. Consider a unital C∗-algebraA, and letϕ : A→ C be a C∗-
trace. Letτ : A→ A be a∗-homomorphism such thatτ (1)= 1 andϕ(τ (A∗A)) ≤
ϕ(A∗A) for every A inA. For any projection P inA, and anyε > 0, it then follows
that the set

E = {k ∈ N : ϕ(Pτ k(P)) > ϕ(P)2− ε}
is relatively dense inN.
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Proof: Let (H, π,Ä) be the cyclic representation ofA obtained fromϕ by the
GNS-construction ( just as fromω in (1)). This gives us a linear function

ι : A→ H : A 7→ π (A)Ä

such thatι(A) is dense inH, and

〈ι(A), ι(B)〉 = 〈Ä, π (A∗B)Ä〉 = ϕ(A∗B)

for all A, B ∈ A. For anyA ∈ A we therefore have

‖ι(τ (A))‖2 = ϕ((τ (A))∗τ (A)) = ϕ(τ (A∗A))

≤ ϕ(A∗A)

= ‖ι(A)‖2·
By the linearity ofι andτ it now follows that

τ̄ : ι(A)→ H : ι(A) 7→ ι(τ (A))

is well defined (namely ifι(A) = ι(B), then ι(τ (A)) = ι(τ (B))), linear and
bounded, with‖τ̄‖ ≤ 1. Since ¯τ is bounded, we can extend it linearly to the
whole ofH, keeping‖τ̄‖ ≤ 1. We are now in a position to imitate the proof of the
measure theoretic Khintchine theorem.

Let Q be the projection ofH onto{x ∈ H : τ̄x = x}. For k ∈ N we have

ϕ(Pτ k(P)) = 〈ι(P), ι(τ k(P))〉 = 〈ι(P), τ̄ kι(P)〉 = 〈x, τ̄ kx〉
wherex = ι(P). By the mean ergodic theorem we know that there exists ann ∈ N
such that ∥∥∥∥∥1

n

n−1∑
k=0

τ̄ kx − Qx

∥∥∥∥∥ ≤ ε

‖x‖ + 1
·

Since ¯τQx = Qx, it follows for any j ∈ N that∥∥∥∥∥1

n

n+ j−1∑
k= j

τ̄ kx − Qx

∥∥∥∥∥ =
∥∥∥∥∥τ̄ j

(
1

n

n−1∑
k=0

τ̄ kx − Qx

)∥∥∥∥∥
≤
∥∥∥∥∥1

n

n−1∑
k=0

τ̄ kx − Qx

∥∥∥∥∥ ≤ ε

‖x‖ + 1
,

so ∣∣∣∣∣
〈

x,
1

n

n+ j−1∑
k= j

τ̄ kx − Qx

〉∣∣∣∣∣ ≤ ‖x‖
∥∥∥∥∥1

n

n+ j−1∑
k= j

τ̄ kx − Qx

∥∥∥∥∥ < ε.
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Also, 〈x, ι(1)〉 = 〈x, Qι(1)〉 = 〈Qx, ι(1)〉 since ¯τ ι(1)= ι(τ (1))= ι(1), so

ϕ(P)2 = |〈ι(P), ι(1)〉|2 = |〈x, ι(1)〉|2 ≤ ‖Qx‖2‖ι(1)‖2 = 〈x, Qx〉
since〈ι(1), ι(1)〉 = ϕ(1∗1)= 1. Thus∣∣∣∣∣1n

n+ j−1∑
k= j

ϕ(Pτ k(P))

∣∣∣∣∣ =
∣∣∣∣∣1n

n+ j−1∑
k= j

〈x, τ̄ kx〉
∣∣∣∣∣ > |〈x, Qx〉| − ε ≥ ϕ(P)2− ε.

Sinceϕ is a C∗-trace, we haveϕ(Pτ k(P)) = ϕ((Pτ k(P))∗Pτ k(P)) ≥ 0 for all
k ∈ N, hence

n+ j−1∑
k= j

ϕ(Pτ k(P)) > n(ϕ(P)2− ε).

This implies thatϕ(Pτ k(P)) > ϕ(P)2− ε for somek ∈ { j , j + 1, . . . , n+ j − 1},
i.e. E is relatively dense inN. ¤

Recall that a finite factor is a finite von Neumann algebraM that is also a
factor, i.e.M ∩M

′ = C1. In this case we can therefore take the trace ofM to be
complex valued, so the conditions of Theorem 4.4 are satisfied whenA is a finite
factor andϕ is its trace.

We also mention that if in Theorem 4.4 we consider the special case where
A, τ , andϕ are taken asB∞(6), τ , andϕ as defined above Definition 4.1, with
µ(X) = 1, then we get the usual measure theoretic theorem of Khintchine, namely,
given anyε > 0, the set{k ∈ N : µ(S∩ T−k(S)) > µ(S)2− ε} is relatively dense
in N for all S∈ 6, where the conditionµ(T−1(S)) = µ(S) can now be weakened
toµ(T−1(S)) ≤ µ(S). This is a stronger result than Poincar´e’s recurrence theorem
(in the form stated above), despite the slightly weaker assumptions.

5. PHYSICAL INTERPRETATION

Consider a bounded quantum system (M, H, H ) and assume thatM is a
factor. Letτ be the system’s time-evolution, as in Proposition 3.3. Fix anyt > 0.
Since the trace tr ofM is faithful, Corollary 4.3 and Proposition 3.3 tell us that for
any nonzero projectionP ∈M there exists ann(t) ∈ N such that

tr
(
Pτn(t)t (P)

)
> 0. (5)

Note that tr(Pτn(t)t (P)) = tr(Pτn(t)t (P)P), which is similar to the form ofω′ in
Postulate 2.3, i.e. a state after a “yes” was obtained in a yes/no experiment with
projectionP. We now look at this similarity more closely by exploiting the analogy
between quantum and classical mechanics described in Sections 2 and 3.

In Section 3 we saw that tr can be viewed as a quantum analogue of integration
over a bounded set in phase space with respect to Lebesgue measureλ. To apply
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Poincaré’s recurrence theorem to classical mechanics, we know that the system in
question has to confined to a bounded (Borel) setF in the phase spaceR2n, i.e.
λ(F) < ∞. Since we can assume without loss thatλ(F) > 0, we can normalizeλ
on F by defining a measureλ′ on the Borel sets ofR2n by

λ′(S) = λ(S∩ F)/λ(F).

If we now viewλ′ as describing a state of the system (as explained in Section 2),
then it essentially says that every part ofF is equally likely to contain the state of
the system (viewed as a point in the phase space). In other words, when we know
nothing about the state of the system (aside from the fact that it is inF), then we
can describe it byλ′, or in C∗-algebraic terms by the stateϕ on B∞(R2n) defined by

ϕ(g) =
∫

g dλ′.

Since tr(1)= 1 andM is a factor, tr is a state onM, and therefore we view tr as the
quantum analogue ofϕ. By this analogy we would expect tr to describe the state
of our quantum system when we know nothing about the system’s state. This is
indeed true in the special case whereH is finite dimensional andM = L(H), since
for any rank one projectionQ in M we then have tr(Q) = 1/dim (H), which tells
us that all values are equally probable when we measure an observable (assuming
the observable has no degenerate eigenvalues). Furthermore, since tr is ultraweakly
continuous, it is a normal state and hence it is given by a density operator (see
Kadison and Ringrose, 1986), as one would expect for a physically meaningful
state. We therefore suggest the following hypothesis:

Postulate 5.1. Consider a bounded quantum system (M, H, H ) whereM is a
factor. When we have no information regarding the state of the system, the state
is given by the trace tr ofM.

So look at the case where we have no information about the state of our
bounded quantum system. By Postulate 5.1 the state is then given by tr. At time 0
we perform a yes/no experiment with projectionP ∈M on the system. Assuming
the result is “yes,” the state of the system after the experiment is given by the state
ω onM defined by

ω(A) = tr(P A)/tr(P),

according to Postulate 2.3. (Also recall from Section 2 that the probability of
getting “yes” is tr(P), therefore tr(P) > 0 in this case.) By (5) we then have

p(t) := ω(τn(t)t (P)
)

> 0. (6)

This simply tells us that if we were to repeat the yes/no experiment mentioned
above exactly at the momentn(t)t , then there is a nonzero probabilityp(t) that we
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will again get “yes.” By replacingt by t ′ = n(t)t + 1, we see that there is in fact
an unbounded set of momentsn(t)t < n(t ′)t ′ < · · · for which (6) holds.

So we have obtained a quantum mechanical version of recurrence. Note that
the measure theoretic Poincar´e recurrence theorem stated in Section 4 will give
exactly the same result as (6), with the same physical interpretation, when applied
to classical mechanics; just replaceω, tr, τ , and P by their classical analogues
described in Section 2 and in this section. So we see that recurrence in quantum
mechanics and in classical mechanics follow from the same theorem, namely
Theorem 4.2, since Corollary 4.3 and measure theoretic Poincar´e recurrence are
both special cases of this theorem.

Of course, Theorem 4.4 tells us that for anyε > 0 there is in fact a relatively
dense setM in N such that

ω(τmt(P)) > tr(P)− ε (7)

for all m ∈ M . Since tr(P) was the probability of getting a “yes” during the first
execution of the yes/no experiment, we see from (7) that at the momentsmt the
probability of getting “yes” when doing the experiment a second time is larger
or at least arbitrarily close to the original probability of getting “yes.” Similar
results concerning wave functions and density operators are presented in Hogg
and Huberman (1982) and Percival (1961). If as before we replaceω, tr, τ , and
P by their classical counterparts, and then apply Theorem 4.4 again, we find the
same result as (7) for classical mechanics, with exactly the same interpretation as
in quantum mechanics.

There is, however, a small technical problem: The probability of repeating
the yes/no experiment exactly at the momentn(t)t is zero. The same goes for any
of the momentsmt above. The next simple proposition remedies the situation in
the quantum case:

Proposition 5.2. Let τ be as in Proposition 3.3, where we takeM to be a finite
factor. Then for any projection P inM, the mapping

R→ R : t 7→ tr(Pτt (P))

is continuous, where tr is the trace ofM.

Proof: By Stone’s theoremUt in Proposition 3.3 is strongly continuous, so clearly
the mappingt 7→ τt (A) is weakly continuous for everyA ∈M. Hencet 7→ Pτt (P)
is weakly continuous. We know that tr is ultraweakly continuous (see Kadison and
Ringrose (1986), for example) and therefore it is weakly continuous on the unit
ball. Since‖Pτt (P)‖ ≤ 1, we conclude thatt 7→ tr(Pτt (P)) is continuous. ¤

So from (7) we see that for everym ∈ M there exists aδm > 0 such that

ω(τs(P)) > tr(P)− ε for mt− δm < s < mt + δm.
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This tells us that quantum mechanical recurrence is possible in practice, assuming
we are working with a bounded quantum system as above, since there is a nonzero
probability of repeating the yes/no experiment during one of the time-intervals
(mt− δm, mt+ δm).

Of course, this remark leads to the next question: Which physical systems
can be mathematically described as bounded quantum systems with the observable
algebras being factors?

In classical mechanics, Poincar´e’s recurrence theorem applies to systems that
are confined to a bounded set in phase space. From a physical standpoint this is
true if the system is confined to a finite volume in space, and it is isolated from
outside influences (which could increase its energy content), to prevent any of its
momentum components to go to infinity. (To see this, use Cartesian coordinates.
Here we assume that each potential of the form−1/r or the like has some “cut-off”
at small values ofr , since, for example, particles are of finite size and collide when
they get too close, the point being that there is not an infinite amount of potential
energy available in the system.)

Most likely then (keeping in mind the close analogy between quantum and
classical mechanics), recurrence will occur for quantum mechanical systems
bounded in space and isolated from outside influences (apart from the yes/no
experiments we perform on it). This is confirmed by Bocchieri and Loinger (1957)
and Percival (1961). So we might guess that these types of systems can be described
as bounded quantum systems in the sense of Definition 3.2 withM a factor. This
seems to be related to the nuclearity requirement in quantum field theory (see Haag,
1996), where a bounded set in classical phase space is intuitively thought of as
corresponding to a finite dimensional subspace of the quantum state space. Since
a quantum system whose state spaceH is finite dimensional is clearly a bounded
quantum system (sinceL(H) is a finite factor in this case), it certainly does not
seem too far-fetched to conjecture that a physical system bounded in space and
isolated from outside influences can be mathematically described as a bounded
quantum system with a factor as the observable algebra. We will not pursue these
matters further in this paper however.
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