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Recurrence in Quantum Mechanics
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We first compare the mathematical structure of quantum and classical mechanics when
both are formulated in a'Galgebraic framework. By using finite von Neumann algebras,

a quantum mechanical analogue of Liouville’s theorem is then proposed. We proceed to
study Poincagrecurrence in Galgebras by mimicking the measure theoretic setting.
The results are interpreted as recurrence in quantum mechanics, similar to @oincar’
recurrence in classical mechanics.

1. INTRODUCTION

The notion of Poincarfecurrence in classical mechanics is quite well-known.
Roughly it means that within experimental error a classical system confined to a
finite volume in phase space will eventually return to its initial state. This happens
because of Liouville’'s theorem which states that Lebesgue measure is invariant
under the Hamiltonian flow.

Recurrence also occurs in quantum mechanics. One approach to recurrence in
guantum mechanics has been through the theory of almost periodic functions (see
for example, Bocchieri and Loinger, 1957; Hogg and Huberman, 1982; Percival,
1961). Another line of research, involving coherent states, along with possible
applications of quantum recurrence, can be traced by Sesttaalti(1999) and
references therein. However, these methods differ considerably from the measure
theoretic techniques employed to study recurrence in classical mechanics.

In this paper we intend to show how recurrence in quantum mechanics can
be cast in a mathematical form that looks the same as the classical case. More
precisely, the quantum case is a noncommutative extension of the classical case.
Some of the methods presented also provide a general view on how to translate
between the quantum and classical descriptions of nature.

A few remarks concerning the mathematical setting are in order. Recently
Niculescuet al. (in press) working from a purely mathematical viewpoint, showed
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that an analogue of Poin@récurrence can be obtained in ‘a&gebraic frame-

work. Since both quantum and classical mechanics can be formulated in the
language of G-algebras, it seems most natural to work in this setting. In fact,
as we shall see in Section 2, quantum mechanics and classical mechanics are iden-
tical, except for commutativity, when both are viewed purelyiraByebraic terms.

Our approach to Poincarecurrence will differ somewhat from that of Niculescu

et al. (2001) in that we will also consider mappings betweéragebras, rather

than just linear functionals on*@algebras. Furthermore, instead of looking at arbi-
trary elements of the algebras, we will concentrate on the projections. The reasons
for this will become clear in Sections 2 and 3. The main mathematical results are
presented in Section 4.

For these results to have implications for quantum mechanics, we can ex-
pect from our remarks concerning the classical case that we will need a quantum
mechanical analogue of Liouville’s theorem. We propose such an analogue in
Section 3, and in the process we are naturally led to consider finite von Neumann
algebras. In Section 5 we describe how the theorems of Section 4 would result
in recurrence in quantum mechanics. Using the analogy between quantum and
classical mechanics we also briefly discuss the properties a quantum mechani-
cal system should most likely have in order to satisfy the requirements of these
theorems.

2. QUANTUM MECHANICS AND CLASSICAL MECHANICS
IN A C*-ALGEBRAIC SETTING

We start with two simple definitions that apply to both quantum mechanics
and classical mechanics:

Definition 2.1. An observableof a physical system is any attribute of the system
which results in a real number when measured. We call this real numbealtree
of the observable during the measurement.

Definition 2.2. Consider any observable of a physical system, and any Borel set
S c R. We now perform an experiment on the system which results in a “yes” if
the value of the observable lies 8during the experiment, and a “no” otherwise;
the experiment gives no further information. We call thigea/no experiment.

Definition 2.2 seems justified since in practice there are always experimental
errors, in other words we always get a range of values (naBiglyefinition 2.2)
rather than a single value.

Let’s look at the C-algebraic formulation of quantum mechanics (also see
Haag, 1996). Consider any quantum mechanical system. We represent the observ-
ables of the system by a unitaf-@lgebra!, called theobservable algebraf the
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system, and the state of the system by a gtate2l (i.e.w is a normalized positive

linear functional o). 2( contains the spectral projections of the system'’s observ-
ables rather than the observables themselves. By this we mean the following: To
any yes/no experiment that we can perform on the system, there corresponds a
projectionP in 2 such thatw(P) is the probability of getting a “yes” during the
experiment for any state of the system. We will refer té asthe projection of

the yes/no experiment.

We will only consider yes/no experiments for which the experimental setup
is such that at least in the case of a “yes” the system survives the experiment (for
example, itis not absorbed by a detector), so further experiments can be performed
on it. What does the system’s state look like after such an experiment? Consider
for the moment the Hilbert space setting for quantum mechanics. Here the (pure)
states of a system are represented by nonzero vectors in a Hilbertfspzaited
thestate spacef the system. Suppose the state is given by the unit vedtos).

After a yes/no experiment the state is given by the projectionaf some Hilbert
subspace afy. Denoting the corresponding projection operator in case of a “yes”
by Q, we see that the system’s state after the experiment would then be given by
the unit vectorQx/| Qx||. It is clear thatQ is the projection of the experiment,
since || Qx||? = (x, Qx) is exactly the probability of getting a “yes.” (Here the
stated on the C-algebrag($) of all bounded linear operators o, given by

0(A) = (x, Ax), is the C-algebraic representation of the statean the sense of

w above.)

Returning to our system with observable algeffrave know by the GNS-
construction (see for example Section 2.3.3 of Bratteli and Robinson, 1987) that
there exists a Hilbert spagg ax-homomorphisnx : 2l — £($), and a unit vector
Qin 9, such that

o(A) = (2, 7(A)R) )

for all Ain L. This looks like the usual expression for the expectation value of an
observable (here representedsbfA)) for a system in the stat@ in the Hilbert
space setting (compageabove). On a heuristic level we therefore regéras the
state space of the system, d@nas its state. Say the result of the yes/no experiment
with projection P is “yes.” On the basis of the Hilbert space setting described
earlier, it would now be natural to expect that after the experiment the state is
represented by the unitvectaft = = (P)2/||7 (P)Q2||, sincer (P) is the projection

of the experiment in the Hilbert space setting in the same wa® above (and
hencer (P) here plays the role d). Note that]|z (P)2||2 = w(P) > 0 since this

is exactly the probability of getting the result “yes.” We now repl&cia (1) by

Q' to get a new expectation functional defined by

o'(A) = (', (AR
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forall Ain 2. Clearlyw'(A) = w(P AP)/w(P), sow'(1) = 1, which implies that
o' is a state of2. Based on these arguments we give the following postulate:

Postulate 2.3. Consider a quantum mechanical system in the stad@ its ob-
servable algebrl. Suppose we get a “yes” during a yes/no experiment performed
on the system. After the experiment the state of the system is then given by the
statew’ on 2l defined by

o' (A) = w(P AP)/w(P)

for all Ain 2(, whereP is the projection of the yes/no experiment.

When expressed in terms of a density operatan a Hilbert space, where
w(A) = Tr(pA) for a bounded linear operatok on the Hilbert space, this is
sometimes refered to as theders rule (see Hughes (1989) ardsrs (1951)).

Lastly we mention that the time-evolution of the system is described by a
one-parametet-automorphism group of 21, so if the projection of a yes/no ex-
perimentisP attime 0, then at timethe projection of the same yes/no experiment
will be = (P).

Now we turn to classical mechanics. We can represent the state of a classical
system by a point in itphase spac®?". This is somewhat restrictive since such
a point represents exact knowledge of the state of the system, which is impossible
in practice. Therefore, we rather represent the state of the system by a Borel
measurg. onR?" such thaj(S) is the probability that the system’s state is a point
somewhere in the Borel s&c R?". In particular we havg(R?") = 1.

We view each observable of the system as a Borel functio®?®" — R.

This simply means that if the system’s state is the pwiitt R?", then the value
of the observable ig (x). If we perform a yes/no experiment to determind i§
value lies in the Borel s C R, then the probability of getting “yes” is clearly

W1 48) = [xr-vs d

wherey denotes characteristic functions (i.e. for any&ghe functiony o assumes
the value 1 onA, and zero everywhere else). We can vigy. (s as a spectral
projection of the observablé, and we will refer to it aghe projection of the
yes/no experiment, just as in the quantum mechanical case. Notg thag)
is a projection in the GalgebraB,,(R?") of all bounded complex-valued Borel
functions onR?". We can define a state on the C-algebraB,,(R?") by

w(9) =/g du

forall gin B, (R?"). Then we see that the probability of getting a “yes” in the above
mentioned yes/no experimentigy  _1()). SO we can view as representing the
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state of the system in exactly the same way as in quantum mechanics, where now
B..(R?") is the unital C-algebra representing the observables of the system. For
this reason we calB,,(R?") the observable algebraf the system. Postulate 2.3
then holds for the classical case as well since a “yes” will mean the system'’s state
is a point in f ~1(S), in which case we can describe the system’s state after the
experiment by the measureé given by

1 V)=V N EHS)/u(fH(9)

for all Borel setsv  R?". As in the case oft andw above .’ corresponds to the
statew’ on B, (R?") given by

o'(g) = /g du' = a)(Xf—1(3)9)(f-l(S))/w(Xf‘l(S))

(the second equality follows using standard measure theoretic arguments, i.e. first
prove it forg a characteristic function and then use Lebesgue convergence). This
is exactly what Postulate 2.3 says if we replace the word “quantum” by “classical.”

For the time-evolution of a classical system we need the concept of a flow.
Consider a measure spa¢€ &, 1), whereu is a measure defined orvaalgebra
% of subsets of the set. A flowon (X, 2, 1) is a mapping — T; onR with the
following propertiesT; is a function defined oiX to itself, Ty is the identity on
X (i.e. To(X) = x), Tso Ty = Ty, andTi(S) € £ and u(Ti(S)) = u(S) for all S
in . We denote this flow simply by;.

The time-evolution of our classical system is given by a flpan (R?", B, 1),
whereS is theo-algebra of Borel sets @&2", andx is the Lebesgue measure on
R?". Note that this statement contains Liouville’s theorem, namgly(S)) = A(S)
for all Sin B. We call T; the Hamiltonian flow It simply means that if at time O
the system is in the statee R?", then at timd it is in the stateT; (x).

As in the C-algebraic approach to quantum mechanics, we want the time-
evolution to act on the observable algebra rather than on the states. It is clear that
an observable given by at time 0, will then be given byf o T; at timet (the
well-known Koopman construction; Koopman, 1931). This is equivalent to the
action of Ty on the spectral projections df, sincex.1,)-1(g = x1-1g o T; for all
Borel setsS c R. Itis easily seen that if we defineby

w(@=9goT )

for all g in B, (R?"), thent is a one-parametefr-automorphism group of the
C*-algebraB,,(R?"). So the time-evolution is described in exactly the same way
as in quantum mechanics when we are working in thel@ebraic setting.

We have now obtained a*@lgebraic formulation of classical mechanics.
Note thatB.,(R?") is an Abelian C-algebra. Replacin®,.(R?") by an arbitrary
Abelian unital C-algebra would give us an abstract-@lgebraic formulation of
classical mechanics. From our discussion above itis clear that if in‘Hadg@braic
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formulation of quantum mechanics described earlier we assum# tha&belian,

then we get exactly this abstract-@lgebraic formulation of classical mechanics.
Setting2 = B.(R?") would make it concrete. In this sense th&-&gebraic
formulation of quantum mechanics actually contains classical mechanics as a
special case.

3. A QUANTUM MECHANICAL ANALOGUE
OF LIOUVILLE’S THEOREM

We have seen in Section 2 that in purely-&gebraic terms quantum me-
chanics and classical mechanics are identical, except of course for the fact that
the classical observable algebra is Abelian while this is not in general true for
quantum mechanics. This suggests that it might be possible to find a quantum
mechanical analogue of Liouville’s theorem. Our first clue in this direction is
the following simple proposition, which is proved by standard measure theoretic
arguments:

Proposition 3.1. Let (X, Z, u) be a measure space witl(X) < oo, and let
T : X — X be a mapping such that#(S) € = for all S¢ =. Let B,(X) be
the C-algebra of all bounded complex-valuédmeasurable functions on X,
and definer andg by t(g) = go T ande(g) = [gdu forall g € By (). Then
w(TY(S) = u(S) forall S e = ifand only ifp(t(g)) = ¢(g) for all g € Bo.(X).

Consider a classical system confined to a bounded Boréi gethe phase
spaceR?. Sor(F) < oo, wherea is the Lebesgue measure BA'. We define a
measures on the Borel sets dR?" by

V(S = A(SN F).

Using Proposition 3.1 we see that Liouville’s theorem for this system can then be
expressed in Calgebraic terms by stating that

9((9)) = ¢(9) ®3)

for all g in B (R?"), wheret is given by (2), andp(g) = [gdv (so ¢ is a
positive linear functional orB,,(R?")). Note that the condition(X) < oo in
Proposition 3.1 can be dropped if we only consider positive elemerig,0E).
Hence (3) would express Liouville’s theorem for systems not necessarily bounded
in phase space if we were to usastead o¥/, and only consider positive elements

g of B (R?). (In this casep could assume infinite values and it would not be a
linear mapping orB,.(R?") any more.) We only work with the bounded case in
recurrence though.
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Because of Section 2, we now suspect that a quantum mechanical analogue
of Liouville’s theorem should have the same form as (3). Let’s look at this from a
different angle. In the Hilbert space setting for quantum mechanics, the state space
$ can be viewed as the analogue of the classical phase B3ac# is a Hilbert
space while we vievR?" purely as a measure space. Apart from dynamics, we
saw in Section 2 that the central objects in both quantum and classical mechanics
are the projections. A projection defined 9ris equivalent to a Hilbert subspace
of $ (namely the range of the projection). A projection definedhis a Borel
measurable characteristic function, and is therefore equivalent to a BoreRgt in
Liouville’s theorem is based on the existence of a natural way of measuring the size
of a Borel set ifR?", namely the Lebesgue measuréVe would therefore like to
have a natural way of measuring the size of a Hilbert subspagéadet a quantum
analogue of Liouville’s theorem. An obvious candidate is the (Hilbert) dimension
dim. For the Hamiltonian flow, Liouville’s theorem states tha{T_(S)) = A(S)
for every Borel se6. (We userl_(S) instead ofT;(S), since this corresponds to the
action of T; on the observable algebra rather than on the states, naely; =
xT(-) Inthe state space time-evolution is given by a one-parameter unitary group
U; on $, and for any Hilbert subspadeof ) we have dim(;*f) = dimU_;R) =
dim(R). This is clearly similar to Liouville’s theorem. For a finite dimensional
state space we will in fact view this as a quantum analogue of Liouville’s theorem.
However, since state spaces are usually infinite dimensional, we would like to work
with something similar to Hilbert dimension, which does not assume infinite values.

This leads us naturally to the*@lgebras known as finite von Neumann
algebras (see for example Kadison and Ringrose, 1986), since for such an algebra
there is a dimension function, defined on the projections of the algebra, which does
not assume infinite values. This function is in fact the restriction of a so-called trace
defined on the whole algebra, so we might as well work with this trace. We now
explain this in more detail.

Let 971 be a finite von Neumann algebra on a Hilbert spgcand lett’ be
its commutant. Then there is a unique positive linear mappirigite> 9 NN
such that tr@B) =tr(B A) and trC) = C forall A, B € Mt andC € M N M. We
call tr thetrace of 9t. We mention that in the special case wh#ite= £(5)), with
$ finite dimensional, tr is just the usual trace (sum of eigenvalues) normalized
such that tr(1)}= 1.

For a projectiorP e 91 of § onto the Hilbert subspad® we see that;* PU;
is the projection oy ontoU;* |, whereU; is a one-parameter unitary group 9n
So in the framework of finite von Neumann algebras we would like to replace the
equation dim{;* £) = dim(&) mentioned above by W PU;) = tr(P).

If a self-adjoint (possibly unbounded) operafin ) is an observable arigh
an observable algebra of a physical system, then we want the spectral projections
xs(A) of A to be contained ift, whereS is any Borel set inR, since these
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projections are the projections of the yes/no experiments that can be performed on
the system. But thefi(A) € 91 for any bounded complex-valued Borel function
f onR. In particulare™'At e Mt for all realt.

For these reasons we will consider physical systems of the following nature:

Definition 3.2. A bounded quantum systegna quantum mechanical system for
which we can take the observable algebra as a finite von Neumann afjebra
on a Hilbert space such that the Hamiltoniahl of the system is a self-adjoint
(possibly unbounded) operator i with e~'Ht < 9t for realt. We denote this
system by 1, $H, H).

The reason for the term “bounded” will become clear in Section 5. We now
propose a quantum analogue of Liouville’s theorem based on the intuitive argu-
ments in terms of dimension given above. We give it in the form of a proposition:

Proposition 3.3. Consider a bounded quantum syst€m, $, H). Then 4 =
e 1! is a one-parameter unitary group af. Lett be the time-evolution of the
system, i.er;(A) = U AU; for all A € 9. Then

tr(z(A)) = tr(A) (4)

for all A in 90t, where tr is the trace o). (This last statement is our quantum
analogue of Liouville’s theorem.)

Proof: SinceU; € 9, we have tr;(A)) = tr(U; AU;) = tr(UiU A) = tr(A).
O

As we suspected, our quantum analogue of Liouville’s theorem, expressed
by (4), is of the same form as thé-@lgebraic formulation of the classical Liouville
theorem as given by (3), with replaced by tr. Remember thatand tr are both
positive linear mappings on the respective observable algebras.

Remark. The classical Liouville theorem can also be expressed in terms of the
Liouville equation

ap
= —1{p,H
o0 {p, H}
wherep : R? x R — R is the density functioni the classical Hamiltonian, and

{-, -} the Poisson bracket. This equation can be seen as describing the flow of a fluid
in phase space such that at any point moving along with the fluid, the density of
the fluid remains constant. So besides giving the time-evolution, this equation also
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states a property of the time-evolution, namely that it conserves volume in phase
space. In quantum mechanics we have the analogous von Neumann equation
dp

gt = e, H]

wherep : R — £(9) is the density operator as a function of time (note that here
the derivative with respect to time is total instead of partial). This equation merely
gives the time-evolutiom(t) = 7_(0(0)) of the density operator, wheteis the
time-evolution on the observable algebra here viewed as acting on the state instead
of the observables. Von Neumann’s equation by itself should therefore not be
regarded as a quantum mechanical analogue of Liouville’s theorem.

4. POINCARE RECURRENCE IN C*-ALGEBRAS

In Section 3, we proposed a quantum analogue of Liouville’s theorem for
bounded quantum systems. So, by analogy with classical mechanics, these are the
type of systems for which we could expect recurrence. In this section, however,
we will be able to study Poincarecurrence in the more general setting of abstract
C*-algebras.

As we shall see, the theory is surprisingly close to the usual measure theo-
retic setting. It therefore seems appropriate to briefly review Paéfgaturrence
theorem and its proof. L&l = {1, 2, 3,...} be the positive integers. Consider a
measure spaceX( =, u) with u(X) < oo, and letT : X — X be a mapping such
thatu(T~X(S)) = u(S) for all Sin . This is merely an abstraction of Liouville’s
theorem. For som& € X, suppose that (SN T~"(S)) = 0 for all n € N. For
all n,k e N we then haveu(T (S NT-H(S) = w(TXSNT(9)) =
w(SNT™(9) =0.Sou(T-™(SNT"(S) =0 for all m, n € N with m # n.

It follows that

w(X) = <U T—k(8)> =Y w(TXE) =) S =nu(S).
k=1 k=1 k=1

Letting n — oo it follows that u(S) = 0. This is one form of Poincats recur-
rence theorem, namely if(S) > 0, then there exists a positive integesuch that
w(SNT(9) > 0.lttellsusthaBcontainsasesnN T "(S) of positive measure,
which is mapped back int8 by T".

Note that the mapping — t(g) = go T is ax-homomorphism of the ©
algebra B,,(X) into itself such thate(z(g)) = ¢(g) and w(SNT"(9) =
@(xst"(xs)) for Se =, wherep(g) = [gdu for all g € B (). Using this no-
tation Poincag’s recurrence theorem can be stated as follows()ik) > 0, then
there exists a positive integer such thatp(xst"(xs)) > 0. The general G
algebraic approach will now be modelled after this situation. We also get some
inspiration from Postulate 2.3, for reasons to be explained in Section 5.
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Definition 4.1. Let2( be ax-algebra, and@B a unital C-algebra. Letp : 2 — B
be a positive mapping (i.@(A*A) > 0 for all A € /). We callp additiveif

Y e(R) <1
k=1

for any projectiondy, ..., P, € 2 for whichp(P«RP) =0if k < 1. We callg
faithful if it is linear, 2l is unital,¢(1) = 1, andg(A*A) > 0 for all nonzeroA in
2. We callp aC*-traceif it is linear, 2 is unital,¢(1) = 1, and for allA, B € 2
we havep(AB) = ¢(B A). (Remember: Any Galgebra is a-algebra.)

If the positive mapping given in Definition 4.1 is faithful, then it is also
additive, as we now show. Le®, ..., P, € 2 be any projections for which
o(P«RP) =0ifk < I.Fork < | wethen have((R P)*P P) = 0,soR P, =0,
and thereford? B = (R Pc)* = 0. This implies that

LEE
k=1

since the left-hand side is a projectiorin Thus

Y e(P) =9 (Z Pk) <e()=1
k=1 k=1

as promised.

In the measure theoretic setting described earlier, we can assume without
loss of generality that(X) = 1. Theng : B (2) — C is an additive C-trace
since

D elxs) =) _mS)=n <U s«) < u(X)
k=1 k=1 k=1

forany S, ..., S € T such thap(xs xs) = u(&N ) =0ifk #1.
We now state and prove a*@lgebraic version of Poincals recurrence
theorem:

Theorem 4.2. Consider ax-algebra?l and a unital C-algebra 9, and let

¢ : 2 — B be an additive mapping. Let: 2 — 2 be ax-homomorphism such
that ¢(z (P QP)) = ¢(PQP) for all projections P,Qe 2(. Then, for any pro-
jection P e 2 such thatp(P) > 0, there exists a positive integer n such that
e(Pt"(P)P) > 0.

Proof: Note thatp(Pt"(P)P) = ¢((z"(P)P)*t"(P)P) > 0 for alln € N. We
now imitate the measure theoretic proof.
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Suppose(Pt"(P)P) = 0 for alln € N. For allk, n € N we then have
o(t“(P)e"™(P)T*(P)) = ¢(z*(P<"(P)P)) = ¢(P<"(P)P) = 0.

Sincey is additive, it follows for anyn € N that
n
S e P) <1
k=1
Furthermore,
n n
> e (P) =D ¢(P)=ng(P) =0
k=1 k=1

sincey is positive and® = P*P. Hence 0< n¢(P) < 1, and thereforal||¢(P)| <
1. Lettingh — oo, it follows thatp(P) =0. O

Itis clear that the measure theoretic Poiroa&currence theorem stated above
is justa special case of Theorem 4.2, since the projections of adg@braB,,(X)
are exactly the characteristic functiopg whereS € 3.

Note that the trace of a finite von Neumann algebra is a faithfulr&ce,
hence we have the following corollary of Theorem 4.2, which will be used in
Section 5:

Corollary 4.3. Consider afinite von Neumann algel®d, and let tr be its trace.
Letr : M — Mt be ax-homomorphism such thair(A)) = tr(A) for all Ain 9.
Then, for any projection = 9t such that t¢P) > 0, there exists a positive integer
n such that ttPz"(P)) > 0.

We can also give a'Calgebraic version of Khintchine’s theorem (see Petersen
(1983), for example, as well as Niculeseual. (in press)). But first we mention
that a subseE of N is calledrelatively denseén N if there is ann € N such that
the set

is nonvoid for everyj € N.
Theorem 4.4. Consider a unital C-algebra®, and lety : A — C be a C-
trace. Letr : 2l — 2 be ax-homomorphism such thafl) = 1andg(t(A*A)) <

@(A* A) for every AinRl. For any projection P iRl, and anye > O, it then follows
that the set

E ={keN:gP"(P)) > ¢(P)?>—¢}

is relatively dense iN.
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Proof: Let (9, 7, ) be the cyclic representation &f obtained fromy by the
GNS-construction (just as from in (1)). This gives us a linear function

;A —>H: A 7(AQ
such that(2() is dense i, and
(«(A), «(B)) = (2, 7 (A"B)Q) = ¢(A"B)
for all A, B € 2. For anyA € 2 we therefore have
le(z(ANIZ = o((z(A) T (A) = ¢(z(A*A))

< o(A*A)

= u(A)*
By the linearity of. andz it now follows that

TA) = 9 1 u(A) = (T (A)

is well defined (namely ifi(A) = «(B), then «(z(A)) = «(z(B))), linear and
bounded, with||7]| < 1. Sincer is bounded, we can extend it linearly to the
whole of §), keeping||t] < 1. We are now in a position to imitate the proof of the
measure theoretic Khintchine theorem.

Let Q be the projection ofy onto{x € ) : Tx = x}. Fork € N we have

@(PT(P)) = («(P), «(z*(P))) = ((P), T*1(P)) = (X, T¥X)

wherex = ((P). By the mean ergodic theorem we know that there existsaiN
such that

TN &g X[ +1
SO
1n+j—l 1n+j—1
X, = ™M= Qx) < X |= D ™ - Qx| < e
n k=] n k=j
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Also, (X, t(1)) = (X, Qu(1)) = (QX, ¢(1)) sinceti(1l) = «(r(1)) = ¢(1), so
@(P)? = [(t(P), (L) * = [{x, «(W)? < 1QxIP[I(L)I? = (X, QX)
since(t(1), (1)) = ¢(1*1) = 1. Thus

n+j—1

= Y o(PT(P))

n &

n+j—1

% Z (x, T*x)

k=i

Sincey is a C-trace, we havey(PtX(P)) = o((P*(P))*Pt(P)) > 0 for all
k € N, hence

> [(x, Qx)| — & = p(P)* —¢.

n+j—1
>~ o(P*(P)) > n(p(P)* — ¢).
k=]
Thisimplies thap(Pt*(P))> ¢(P)?> —eforsomek € {j, j +1,...,n+ j — 1},
i.e. E isrelatively dense ilN. O

Recall that a finite factor is a finite von Neumann algeliahat is also a
factor, i.e M N 9N = C1. In this case we can therefore take the trac®bfo be
complex valued, so the conditions of Theorem 4.4 are satisfied @t finite
factor andp is its trace.

We also mention that if in Theorem 4.4 we consider the special case where
2, t, andg are taken a8..(X), r, andg as defined above Definition 4.1, with
w(X) = 1, then we get the usual measure theoretic theorem of Khintchine, namely,
given anye > 0, the setk € N: u(SNTX(9)) > u(S)? — ¢} is relatively dense
in N for all S e X, where the conditiop(T ~1(S)) = 1(S) can now be weakened
to u(T~H(9)) < u(S). Thisis a stronger result than Poinearfecurrence theorem
(in the form stated above), despite the slightly weaker assumptions.

5. PHYSICAL INTERPRETATION

Consider a bounded quantum systeit, (9, H) and assume thapt is a
factor. Letr be the system’s time-evolution, as in Proposition 3.3. Fixtany0.
Since the trace tr abt is faithful, Corollary 4.3 and Proposition 3.3 tell us that for
any nonzero projectio” € 9t there exists an(t) € N such that

tr(PTn(t)t(P)) > 0. (5)

Note that tr@ny (P)) = tr(P ). (P) P), which is similar to the form ok’ in
Postulate 2.3, i.e. a state after a “yes” was obtained in a yes/no experiment with
projectionP. We now look at this similarity more closely by exploiting the analogy
between quantum and classical mechanics described in Sections 2 and 3.

In Section 3 we saw that tr can be viewed as a quantum analogue of integration
over a bounded set in phase space with respect to Lebesgue meatoi@pply
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Poincag’s recurrence theorem to classical mechanics, we know that the system in
question has to confined to a bounded (Borel)sén the phase spadg?", i.e.

A(F) < o0. Since we can assume without loss théE) > 0, we can normalize

on F by defining a measurg on the Borel sets dR?" by

X(S) = A(SN F)/i(F).

If we now view’ as describing a state of the system (as explained in Section 2),
then it essentially says that every partrofs equally likely to contain the state of

the system (viewed as a point in the phase space). In other words, when we know
nothing about the state of the system (aside from the fact that ithg,ithen we
candescribe it by, or in C*-algebraic terms by the stageon B, (R?") defined by

o(@ = [gav.

Since tr(1)= 1 and?t is a factor, tr is a state dii, and therefore we view tr as the
gquantum analogue af. By this analogy we would expect tr to describe the state

of our quantum system when we know nothing about the system’s state. This is
indeed true in the special case whérss finite dimensional antht = £(£)), since

for any rank one projectio in 9t we then have tiQ) = 1/dim (£), which tells

us that all values are equally probable when we measure an observable (assuming
the observable has no degenerate eigenvalues). Furthermore, since tris ultraweakly
continuous, it is a normal state and hence it is given by a density operator (see
Kadison and Ringrose, 1986), as one would expect for a physically meaningful
state. We therefore suggest the following hypothesis:

Postulate 5.1. Consider a bounded quantum systel, (), H) where9t is a
factor. When we have no information regarding the state of the system, the state
is given by the trace tr dint.

So look at the case where we have no information about the state of our
bounded quantum system. By Postulate 5.1 the state is then given by tr. At time O
we perform a yes/no experiment with projectiBre 2t on the system. Assuming
the resultis “yes,” the state of the system after the experiment is given by the state
 on <t defined by

w(A) = tr(P A)/tr(P),

according to Postulate 2.3. (Also recall from Section 2 that the probability of
getting “yes” is trfP), therefore trP) > 0 in this case.) By (5) we then have

p(t) := w(tmar(P)) > O. (6)

This simply tells us that if we were to repeat the yes/no experiment mentioned
above exactly at the momenft)t, then there is a nonzero probabilipft) that we
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will again get “yes.” By replacing by t’ = n(t)t + 1, we see that there is in fact
an unbounded set of momemif)t < n(t’)t’ < -- - for which (6) holds.

So we have obtained a quantum mechanical version of recurrence. Note that
the measure theoretic Poineatecurrence theorem stated in Section 4 will give
exactly the same result as (6), with the same physical interpretation, when applied
to classical mechanics; just replaeetr, r, and P by their classical analogues
described in Section 2 and in this section. So we see that recurrence in quantum
mechanics and in classical mechanics follow from the same theorem, namely
Theorem 4.2, since Corollary 4.3 and measure theoretic P@meattrence are
both special cases of this theorem.

Of course, Theorem 4.4 tells us that for any O there is in fact a relatively
dense seM in N such that

o(tm(P)) > tr(P) — ¢ ()

for all m € M. Since trf?) was the probability of getting a “yes” during the first
execution of the yes/no experiment, we see from (7) that at the mommrite
probability of getting “yes” when doing the experiment a second time is larger
or at least arbitrarily close to the original probability of getting “yes.” Similar
results concerning wave functions and density operators are presented in Hogg
and Huberman (1982) and Percival (1961). If as before we replate r, and
P by their classical counterparts, and then apply Theorem 4.4 again, we find the
same result as (7) for classical mechanics, with exactly the same interpretation as
in quantum mechanics.

There is, however, a small technical problem: The probability of repeating
the yes/no experiment exactly at the mome(hjt is zero. The same goes for any
of the momentsnt above. The next simple proposition remedies the situation in
the quantum case:

Proposition 5.2. Lett be as in Proposition 3.3, where we tak@to be a finite
factor. Then for any projection P ifit, the mapping
R—>R:te tr(Pn(P))

is continuous, where tr is the trace 9.
Proof: By Stone’stheorerd, in Proposition 3.3 is strongly continuous, so clearly
the mapping — t(A) is weakly continuous for everk € 9t. Hence — Pt (P)
is weakly continuous. We know that tr is ultraweakly continuous (see Kadison and
Ringrose (1986), for example) and therefore it is weakly continuous on the unit
ball. Since|| P (P)|| < 1, we conclude that— tr(Pz(P)) is continuous. O

So from (7) we see that for evemy € M there exists @, > 0 such that

o(ts(P)) > tr(P) —e for mt—§8yn<s<mt+dn.
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This tells us that quantum mechanical recurrence is possible in practice, assuming
we are working with a bounded quantum system as above, since there is a nonzero
probability of repeating the yes/no experiment during one of the time-intervals
(mt — &m, Mt + 8p).

Of course, this remark leads to the next question: Which physical systems
can be mathematically described as bounded quantum systems with the observable
algebras being factors?

In classical mechanics, Poine&s tecurrence theorem applies to systems that
are confined to a bounded set in phase space. From a physical standpoint this is
true if the system is confined to a finite volume in space, and it is isolated from
outside influences (which could increase its energy content), to prevent any of its
momentum components to go to infinity. (To see this, use Cartesian coordinates.
Here we assume that each potential of the fertyir or the like has some “cut-off”
at small values aof, since, for example, particles are of finite size and collide when
they get too close, the point being that there is not an infinite amount of potential
energy available in the system.)

Most likely then (keeping in mind the close analogy between quantum and
classical mechanics), recurrence will occur for quantum mechanical systems
bounded in space and isolated from outside influences (apart from the yes/no
experiments we perform on it). This is confirmed by Bocchieri and Loinger (1957)
and Percival (1961). So we might guess that these types of systems can be described
as bounded guantum systems in the sense of Definition 3.2Wighfactor. This
seemsto be related to the nuclearity requirementin quantum field theory (see Haag,
1996), where a bounded set in classical phase space is intuitively thought of as
corresponding to a finite dimensional subspace of the quantum state space. Since
a quantum system whose state spfds finite dimensional is clearly a bounded
quantum system (sincg($) is a finite factor in this case), it certainly does not
seem too far-fetched to conjecture that a physical system bounded in space and
isolated from outside influences can be mathematically described as a bounded
guantum system with a factor as the observable algebra. We will not pursue these
matters further in this paper however.
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